Solutions for Flow Assurance andAsset Integrity Management
EVERYTHING AT YOUR FINGERTIPS
Brenntag offers a wide range of highly specialised products for oil and natural gas extractive industry. Our products are of the highest quality allowing cost reduction, process performance improvement and higher quality of the extracted raw material.

We approach the needs and requirements of our customers as well as their production conditions and the bed parameters individually. We provide professional services and technological support. Brenntag’s assets include logistic infrastructure, technical equipment, analytical and research laboratory and highly-qualified personnel.

Continuous research & development and a growing number of available analytical methods and laboratory tests are used to develop new products, while the quality of delivered products is constantly monitored by a dedicated QC laboratory.

Our product groups:
- corrosion inhibitors
- hydrate inhibitors
- inhibitors, dispersants, paraffin and asphaltene solvents
- demulsifiers
- hydrogen sulphide scavengers
- scale inhibitors
- foaming agents
- desiccants
- biocides
- others
Corrosion inhibitors

If not controlled, corrosion can lead to a damage or premature failure of equipment and piping. The produced water with dissolved acid gases such as H$_2$S and CO$_2$ can be very corrosive under certain conditions.

Factors influencing the corrosiveness of a system include, but are not limited to, water chemistry, acid gas content, temperature, pressure and fluid dynamics. The type of material affected by the above factors is also important. Two types of inhibitors are available for protection against corrosion: batch and continuous inhibitors.

Batch corrosion inhibitors

Batch inhibitors are applied by covering all bare steel surfaces with the product. This is typically done by using a pig train, although circulation applications are also possible for wells.

The volume of inhibitor, required for protection, depends on the bare steel surface area. To obtain satisfactory results, it is necessary to provide sufficient contact time to allow an inhibitor film to be laid down. Batch corrosion inhibitors are known as “greasy” inhibitors. When applied correctly, they form a thick compact protective film on the pipe wall.

This film is a physical and chemical barrier to protect the pipe against both general and local corrosion. The film is gradually washed off over time and must be regularly re-applied to maintain anti-corrosion protection. Re-application frequency depends on the surrounding conditions. Batch inhibitors are typically hydrocarbon-soluble substances.

Continuous corrosion inhibitors

Continuous inhibitors are applied by regular injection into the fluid/gas stream. The inhibitor disperses into the produced water, providing an effective film coating on the water-wet metal surfaces within the pipelines.

Continuous inhibitors are typically water-soluble substances. Volatile components, contained in the inhibitor, disperse into the mist flow regime of the vapour phase, neutralising the acid in water droplets, thereby protecting the upper quadrant of the pipeline.

Continuous inhibitors are designed to maintain an integral film on pipe walls. In practice, it means that when an inhibitor molecule detaches from the pipe surface, another one takes its place.

Voids in the inhibitor film are formed constantly and are immediately healed in a “leap-frog” or “cascade” process. It is therefore critical that the minimum product level must be maintained, so an adequate inventory is always available to fill the holes in the film.

Corrosion probes or other monitoring techniques are recommended to verify the inhibitor performance during the corrosion programme.

Brenntag offers a full range of batch and continuous inhibitors to provide excellent protection against corrosion:

- TN-08230 – corrosion inhibitor for CO$_2$ systems
- TN-08240 – corrosion inhibitor for H$_2$S and CO$_2$ systems
- TN-08265 – corrosion inhibitor for H$_2$S and CO$_2$ systems
- TN-08980 – vapour phase corrosion inhibitor
- TN-08521 – batch corrosion inhibitor
- TN-08011 – corrosion inhibitor for water closed loop systems
Traditionally, methanol has been used to control the formation of hydrates. Methanol works by lowering the temperature at which hydrates form at a given pressure.

To control severe hydrate problems, large quantities of methanol are needed.

Kinetic hydrate inhibitors

While methanol lowers the temperature in which hydrates form, kinetic inhibitors interfere with the formation of the hydrate crystal.

The required dosage of hydrate inhibitors are determined individually, depending on the conditions. Pressure and temperature drops are also important. It is required that the inhibitor is applied upstream of the areas where hydrates are causing problems.

Kinetic hydrate inhibitors do not cause problems with the formation of scales or insoluble salts, nor are they known to cause problems with pumping water into wells. What is more, they will not cause problems in gas purification systems as they degrade harmlessly in gas facilities and amine systems.

The use of hydrate inhibitors instead of methanol offers other advantages as well. For example, there are no problems with dissolved oxygen, which could initiate corrosion of the system, the volumes involved are much more manageable and inhibitors do not interfere with any other chemical processes.

Brenntag offers a full range of kinetic hydrate inhibitors, including products designed specifically for low fluid wells, bifunctional hydrate and corrosion inhibitors and ether-based products for quick removal of the existing hydrate plugs. Inhibited methanol is also available:

- TN-10410 – kinetic hydrate inhibitor
- TN-11360 – kinetic corrosion and hydrate inhibitor
- TN-11515 – kinetic corrosion and hydrate inhibitor
- TN-11820 – kinetic corrosion and hydrate inhibitor
- TN-11930 – kinetic corrosion and hydrate inhibitor
- TN-10100 – inhibited methanol
- TN-10500 – de-icer
Paraffins and asphaltene inhibitors

Paraffins (waxes) and asphaltenes are natural compounds which can precipitate out and form deposits during the production of oil and gas. Paraffins are mixtures of linear or branched alkanes containing more than fifteen carbon atoms per molecule. Their melting point is above room temperature.

Asphaltenes are mixtures of high molecular weight cyclic compounds (mostly aromatic). They may contain many heteroatoms, including for example nitrogen, oxygen, sulphur and heavy metals. Unlike paraffins, asphaltenes do not melt at elevated temperatures. They decompose above 300°C producing coke and gas.

Waxes and asphaltenes can deposit as low as at the bottom of the well, in consequence restricting the flow or even completely blocking the pipeline. Asphaltenes can also cause problems in gas facilities.

Control of paraffins and asphaltenes is essential for trouble-free exploitation of oil and gas. The optimum choice of a product preventing the deposit formation or removing the existing deposits often depends on the possibility of applying the appropriate technology, the system parameters and the actual facility condition.
Inhibitors and dispersants

Inhibitors and dispersants are both used to prevent deposition, but they work in a different way. Inhibitors interfere with the formation of wax crystals while dispersants prevent the existing microscopic crystals from agglomerating and forming of deposits. To properly select the product and its injection rates, many parameters must be known, in particular the temperature at which paraffin crystals appear. In case of paraffin deposits, the inhibitor should be applied before formation of any crystals.

Inhibitors are typically used where the water content in produced fluid is low, while dispersants where the water content is high (over 50%).

Under certain conditions asphaltenes can start agglomerating and forming deposits. Asphaltene inhibitors offer protection against such agglomeration and are applied on a continuous basis. Dispersants may be applied either on a batch or on a continuous basis, depending on the situation.

Solvents

Solvents are widely used to remove the existing organic deposits. Due to diversity of deposits, solvent composition is designed for specific application in order to maximise product performance and optimise its quantity.

Brenntag selects the type of solvent from a wide range of products, based on the field and laboratory tests.

Our offer includes a full range of inhibitors and dispersants as well as paraffin and asphaltene solvents:

- TN- 09020 – paraffin inhibitor
- TN- 09100 – paraffin inhibitor
- TN- 09150 – paraffin inhibitor
- TN- 09311 – paraffin inhibitor
- TN-12020 – paraffin dispersant
- TN-13010 – paraffin solvent
- TN-13040 – asphaltene solvent

Demulsifiers

The most common type of emulsion found in oil fields is water-in-oil. Emulsions are problematic for extraction companies and refineries. Water introduced into systems contributes to a number of problems, including corrosion. In refineries, chlorides contained in water can damage catalysts.

In order to produce oil in accordance with the specification (less than 0.5% BS&W), any water produced alongside hydrocarbons must be removed before crude transportation. There is a wide variety of equipment designed to aid in the process of separating water from the obtained hydrocarbons. To ensure that water/oil emulsion separation is timely, complete and economical, demulsifiers are typically applied.

Demulsifiers are formulations of surfactants designed to remove water contained in the extracted oil. Demulsifiers affect the water/oil mutual influence and improve the efficiency of separation.

In addition, they aid solids elimination, reduce the amount of slop or off-spec oil and improve water cleanliness.

Brenntag offers a wide range of speciality demulsifiers, based on various active compounds. Selection of the correct product is usually made directly in the oilfield using bottle tests.

To protect the environment, Brenntag also offers a number of "green" demulsifiers. They consist of environmentally friendly active components and are based on water. Both batch and continuous demulsifiers are available.

- TN- 02940 – water clarifier
- TN- 02175 – demulsifier (for heavy oil)
- TN- 02111 – demulsifier (for medium oil)
- TN- 02342 – demulsifier (for light oil)
- TN- 02100, TN- 02107 – demulsifiers / desalters
Hydrogen sulphide scavengers

H_2S is a poisonous gas often present in the produced fluids. Apart from being toxic, H_2S can cause severe corrosion problems. For this reason, H_2S is often removed from the produced gas. In marginally sour systems the most economical and efficient method of purifying gas is through the use of hydrogen sulphide scavengers.

As opposed to amine compounds, these substances require only minimal investments. They are ideal for use in marginally sour systems which cannot economically justify more elaborate amine systems but still require the use of gas which is free of corrosive components. H_2S scavengers are formulated to quickly and selectively remove H_2S from a gas stream. They may be applied by either continuous injection into the gas stream or through the use of bubble columns.

Continuous injection

Hydrogen sulphide scavengers injected continuously into the gas stream require only a liquid pump and a sprayer. This method, although less efficient than bubbling, is very economical. The spent scavenger dissolves into the produced water and is disposed of when the water is re-injected into the well.

Bubble column applications

Bubble columns are charged with a specific volume of scavenger to provide an extended contact surface of fluid with hydrogen sulphide. Bubble columns are sized in such a way that they provide sufficient contact time of the gas with scavenger.

Once the charge of the scavenger in the column is used, the spent product must be removed and replaced with a fresh one. Anti-foaming agents may be needed to prevent carry-over of the scavenger from the column.

H_2S scavengers offered by Brenntag do not contain free formaldehyde. Although formaldehyde is a very effective H_2S scavenger, its toxicity precludes its use.

Additionally, the reaction product of formaldehyde with H_2S is solid and can cause problems with the processing equipment.

For the abovementioned reasons Brenntag does not offer formaldehyde containing scavengers.

- **TN-04055** – H_2S scavenger based on triazine
- **TN-04080** – high flash point H_2S scavenger based on triazine
- **TN-04060** – H_2S scavenger based on glyoxal
- **TN-04070** – H_2S scavenger based on MBO
Under certain conditions, production in low pressure gas wells may become blocked by water plugs. This happens when gas is unable to lift water out of the well.

The water build-up down-hole may be reduced or even stopped by water head accumulation. When the produced water head pressure is balanced by gas diffusion pressure, applied to the water inside the geological formation, the wells load up and stop functioning. To revive the well, water must be removed. This is often done by blowing the well down manually.

The application of foaming agents is an alternative to the manual blowing down the well when it loads up with water. Foamers work by foaming the water down-hole so that the gas can lift it out of the well.

The foam lifetime is short, so usually it does not cause any problems in downstream separators. However, if foaming occurs during the further processing steps it may be necessary to administer an antifoam.

The foaming of water in order to unload the well has numerous advantages as improved gas inflow and production with less downtime are achieved.

A significant increase in productivity is often possible with foaming programmes in place. Brenntag offers both liquid and solid foaming agents together with specially formulated solid foamers containing corrosion inhibitors and antiscalants.

Typical Brenntag foamers:
- TN-01040 – liquid foamer
- HighFoam 30 – foaming stick
- CorrFoam 35 – foaming stick with corrosion inhibitor (dual function)
- AcidStick 30 – acid stick

Solid foaming agents

Foaming sticks are solid formulations containing fully water-soluble surfactants, lubricants and foam stabilisers. Foaming sticks support the carryover of the bed water from gas wells, especially those exploiting under-packer horizons and from low productivity wells with lowered bed pressures. They are used in concentrations of 0.2-0.6 kg per 1 m3 of water. Based on client’s requirements, Brenntag develops foaming sticks in desired shapes and dimensions.

Liquid foaming agents

Liquid foaming agents are applied by means of continuous injection. Typical injection rates are in the range of 0.5 to 4 litres per day. Batch application of foamers is not recommended due to uncontrollable foam carry-over to compressors or other equipment.

Defoamers

Defoamers (anti-foaming agents) are chemical additives that reduce and hinder the formation of foam in oil & gas production processes.

Foam can occur in heavy oils, where dispersed gas bubbles drive up the liquid and produce foam at the top of the liquid surface. The nature of gas dispersions in oil distinguishes foamy oil behaviour from conventional heavy oil.

The gas does not coalesce into large gas bubbles nor into a continuous flowing gas phase. Instead it remains, as small bubbles entrained in the crude oil, keeping the effective oil viscosity low while providing expansive energy that helps drive the oil towards the producing well.
Many produced waters are highly prone to the formation of mineral scales. There are two main mechanisms for scale formation: a change in system conditions (temperature or pressure) can promote carbonate scale formation and co-mingling of incompatible waters (formation water and injection water) can result in the formation of sulphate scale. Oilfield scale most commonly consists of sulphates or carbonates, however the formation of sulphides and oxides is also possible. If left untreated, scale deposition can lead to numerous problems such as poor heat transfer in heat exchangers, plugging of pipelines and valves and even equipment damage.

In addition to causing deposition problems, barium sulphate scales are also radioactive, which poses a health risk. Existing calcium carbonate and calcium sulphate scales can be removed chemically, for example with acids. Others, such as barium sulphate deposits, may require mechanical means as acids are ineffective, while other chemical treatments are very slow and inefficient. In general, it is better to try to prevent inorganic deposits from forming than it is to remove them after they have formed.

Brenntag supplies a wide variety of the phosphonate and polymer based scale inhibitors formulated for use in various conditions to prevent the formation of such deposits in pipelines and oil facilities.

Defoamers destroy an existing foam, they are used in concentration between 1 and 3 L per 1 m³ of oil.

Brenntag offers below mentioned kinds of defoamers:

- TN-03010 – polymer based
- TN-03050 – silicone based
- TN-03060 – silicone based
- Brenntaskim 7150 – alcohol based
Desiccants

Continuous application

Desiccant tablets consist of hygroscopic materials, which absorb water vapour from the compressed air or gas streams. The surface of a desiccant tablet dissolves slowly forming brine, which drips from the tablet surface onto the bottom of the drying column.

Tablets dissolve steadily until their complete consumption. They are produced in a conventional tabletting process in which raw materials are ground and mixed and then formed into tablets using a 15-tonne press.

Brenntag offers three types of tablets for economical gas drying to the desired parameters.

Calcium chloride tablets for gas pre-drying, used in the first column, absorb a large portion of moisture contained in the gas. This solution is the most economical, as it allows lithium chloride tablets in the second stage to perform in-depth drying of gas while extending their lifetime.

Lithium chloride tablets are three times more efficient than standard desiccants. They can be used individually or in conjunction with calcium chloride tablets. The latter option offers the optimal drying results in terms of value for money.

Novel Calcium Bromide tablets outperform the properties of lithium chloride tablets. They offer excellent drying performance and are recommended for use as independent charge.

Molecular sieves

Molecular sieves are absorbents widely used in oil and gas production and petrochemical industry. They are nanoporous materials with a defined pore size distribution and the ability to selectively absorb molecules. Molecular sieves are also used as desiccants for most gases and liquids.

Brenntag offers mainly zeolite molecular sieves of various pore diameter ranging from 3Å to 10Å and of the bead size ranging from 1.6 mm to 5 mm.

Using the proper type of aluminosilicate molecular sieves or a combination thereof enables the absorption of many types of gases and gas mixtures. These include water, hydrogen sulphide, carbon monoxide and dioxide, oxygen and nitrogen.

Molecular sieves are valued for their high absorption capacity and high selectivity. It is also important that they are chemically inert and recoverable materials. Molecular sieves retain their capacity at temperatures higher than alumina or silica gel.

Brenntag also offers the abovementioned desiccants such as activated alumina and silica gel as well as active carbon, which absorbs heavy metals and is used to remove many impurities.
Commodities

Brenntag also offers a wide selection of commodity chemicals commonly used in the oil & gas industry.

These include but are not limited to:
- monoethylene glycol (MEG)
- diethylene glycol (DEG)
- triethylene glycol (TEG)
- ethylene glycol monobutyl ether (EGMBE)
- monoethanolamine (MEA)
- diethanolamine (DEA)
- methyldiethanolamine (MDEA)
- solvent naphtha 100 and 150
- xylene

Biocides

Microorganisms in oil and gas systems may be naturally occurring or be the result of contamination from poor operational practices, such as using untreated water for well workovers.

Bacteria typically found in oilfield applications are anaerobic (organism which can live under oxygen-free conditions). The presence of bacteria in oil facilities can have numerous negative repercussions. Bacteria may foul the equipment or accelerate corrosion in oil production facilities (sulphate-reducing bacteria, SRB). Not only do they form colonies providing perfect conditions for under-deposit corrosion but their metabolism also contributes to corrosion by the formation of acidic conditions.

Microorganisms can be identified by testing water samples using field test kits. The presence of bacteria may also be confirmed by the services which are offered by external laboratories. These tests are based on epifluorescence and other microscopic techniques.

It is critical for the operation of the production facilities to control the bacterial cultures present. The use of biocides is an economic way of bacteria control and prevention. They penetrate into the biofilm and create the environment which is toxic to bacteria. They are usually water-soluble as water makes the habitat for most bacteria.

Biocides should be used periodically; they will offer a higher biocidal activity and hence, a better cost-effectiveness. Moreover, the risk that bacteria may become inured to the specific biocide over time will be lower. It is very important above all, to control bacterial contamination from its source.

In case of any biocidal control programme, it is recommended to implement the programme as early as possible to eliminate bacteria at the very initial point. A biocide may then be employed at further locations to eliminate the colonies, which may have developed within downstream equipment.

This approach effectively neutralises bacteria from the entire facility and minimises the risk of recontamination by colonies flowing from untreated areas to these parts of the facility which have already been cleaned.

After biocide programmes have been initiated, the performance of the biocide should be evaluated by running cultures on water samples using field test kits. Brenntag offers a full range of biocides.